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Check out the tutorial session "Designing Modern Streaming Data

Applications" at the Strata Data Conference in New York City,

September 11-13, 2018.

Editor's note: This is the first post in a two-part series about the

evolution of data processing, with a focus on streaming systems,

unbounded data sets, and the future of big data. See part two.

Streaming data processing is a big deal in big data these days,

and for good reasons. Amongst them:

Businesses crave ever more timely data, and switching to

streaming is a good way to achieve lower latency.

The massive, unbounded data sets that are increasingly common
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in modern business are more easily tamed using a system

designed for such never-ending volumes of data.

Processing data as they arrive spreads workloads out more

evenly over time, yielding more consistent and predictable

consumption of resources.

Despite this business-driven surge of interest in streaming, the

majority of streaming systems in existence remain relatively

immature compared to their batch brethren, which has resulted in

a lot of exciting, active development in the space recently.

Strata Data Conference
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As someone who’s worked on massive-scale streaming systems

at Google for the last five+ years (MillWheel, Cloud Dataflow), I’m

delighted by this streaming zeitgeist, to say the least. I’m also

interested in making sure that folks understand everything that

streaming systems are capable of and how they are best put to

use, particularly given the semantic gap that remains between

most existing batch and streaming systems. To that end, the fine

folks at O’Reilly have invited me to contribute a written rendition

of my Say Goodbye to Batch talk from Strata + Hadoop World

London 2015. Since I have quite a bit to cover, I’ll be splitting this

across two separate posts:

Streaming 101: This first post will cover some basic background

information and clarify some terminology before diving into details

about time domains and a high-level overview of common

approaches to data processing, both batch and streaming.

1. 

The Dataflow Model: The second post will consist primarily of a

whirlwind tour of the unified batch + streaming model used by

Cloud Dataflow, facilitated by a concrete example applied across

a diverse set of use cases. After that, I’ll conclude with a brief

semantic comparison of existing batch and streaming systems.

2. 

So, long-winded introductions out of the way, let’s get nerdy.

Background

To begin with, I’ll cover some important background information

that will help frame the rest of the topics I want to discuss. We’ll

do this in three specific sections:

Terminology: To talk precisely about complex topics requires

precise definitions of terms. For some terms that have overloaded

interpretations in current use, I’ll try to nail down exactly what I

mean when I say them.
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Capabilities: I’ll remark on the oft-perceived shortcomings of

streaming systems. I’ll also propose the frame of mind that I

believe data processing system builders need to adopt in order to

address the needs of modern data consumers going forward.

Time domains: I’ll introduce the two primary domains of time that

are relevant in data processing, show how they relate, and point

out some of the difficulties these two domains impose.

Terminology: What is streaming?

Before going any further, I’d like to get one thing out of the way:

what is streaming? The term “streaming” is used today to mean a

variety of different things (and for simplicity, I’ve been using it

somewhat loosely up until now), which can lead to

misunderstandings about what streaming really is, or what

streaming systems are actually capable of. As such, I would

prefer to define the term somewhat precisely.

The crux of the problem is that many things that ought to be

described by what they are (e.g., unbounded data processing,

approximate results, etc.), have come to be described colloquially

by how they historically have been accomplished (i.e., via

streaming execution engines). This lack of precision in

terminology clouds what streaming really means, and in some

cases, burdens streaming systems themselves with the

implication that their capabilities are limited to characteristics

frequently described as “streaming,” such as approximate or

speculative results. Given that well-designed streaming systems

are just as capable (technically more so) of producing correct,

consistent, repeatable results as any existing batch engine, I

prefer to isolate the term streaming to a very specific meaning: a

type of data processing engine that is designed with infinite data

sets in mind. Nothing more. (For completeness, it’s perhaps worth
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calling out that this definition includes both true streaming and

micro-batch implementations.)

As to other common uses of “streaming,” here are a few that I

hear regularly, each presented with the more precise, descriptive

terms that I suggest we as a community should try to adopt:

Unbounded data: A type of ever-growing, essentially infinite data

set. These are often referred to as “streaming data.” However, the

terms streaming or batch are problematic when applied to data

sets, because as noted above, they imply the use of a certain

type of execution engine for processing those data sets. The key

distinction between the two types of data sets in question is, in

reality, their finiteness, and it’s thus preferable to characterize

them by terms that capture this distinction. As such, I will refer to

infinite “streaming” data sets as unbounded data, and finite

“batch” data sets as bounded data.

1. 

Unbounded data processing: An ongoing mode of data

processing, applied to the aforementioned type of unbounded

data. As much as I personally like the use of the term streaming

to describe this type of data processing, its use in this context

again implies the employment of a streaming execution engine,

which is at best misleading; repeated runs of batch engines have

been used to process unbounded data since batch systems were

first conceived (and conversely, well-designed streaming systems

are more than capable of handling “batch” workloads over

bounded data). As such, for the sake of clarity, I will simply refer

to this as unbounded data processing.

2. 

Low-latency, approximate, and/or speculative results: These

types of results are most often associated with streaming

engines. The fact that batch systems have traditionally not been

designed with low-latency or speculative results in mind is a

3. 
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historical artifact, and nothing more. And of course, batch engines

are perfectly capable of producing approximate results if

instructed to. Thus, as with the terms above, it’s far better

describing these results as what they are (low-latency,

approximate, and/or speculative) than by how they have

historically been manifested (via streaming engines).

From here on out, any time I use the term “streaming,” you can

safely assume I mean an execution engine designed for

unbounded data sets, and nothing more. When I mean any of the

other terms above, I will explicitly say unbounded data,

unbounded data processing, or low-latency / approximate /

speculative results. These are the terms we’ve adopted within

Cloud Dataflow, and I encourage others to take a similar stance.

On the greatly exaggerated limitations of streaming

Next up, let’s talk a bit about what streaming systems can and

can’t do, with an emphasis on can; one of the biggest things I

want to get across in these posts is just how capable a well-

designed streaming system can be. Streaming systems have long

been relegated to a somewhat niche market of providing low-

latency, inaccurate/speculative results, often in conjunction with a

more capable batch system to provide eventually correct results,

i.e. the Lambda Architecture.

For those of you not already familiar with the Lambda

Architecture, the basic idea is that you run a streaming system

alongside a batch system, both performing essentially the same

calculation. The streaming system gives you low-latency,

inaccurate results (either because of the use of an approximation

algorithm, or because the streaming system itself does not

provide correctness), and some time later a batch system rolls

along and provides you with correct output. Originally proposed
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by Twitter’s Nathan Marz (creator of Storm), it ended up being

quite successful because it was, in fact, a fantastic idea for the

time; streaming engines were a bit of a letdown in the correctness

department, and batch engines were as inherently unwieldy as

you’d expect, so Lambda gave you a way to have your proverbial

cake and eat it, too. Unfortunately, maintaining a Lambda system

is a hassle: you need to build, provision, and maintain two

independent versions of your pipeline, and then also somehow

merge the results from the two pipelines at the end.

As someone who has spent years working on a strongly-

consistent streaming engine, I also found the entire principle of

the Lambda Architecture a bit unsavory. Unsurprisingly, I was a

huge fan of Jay Kreps’ Questioning the Lambda Architecture post

when it came out. Here was one of the first highly visible

statements against the necessity of dual-mode execution;

delightful. Kreps addressed the issue of repeatability in the

context of using a replayable system like Kafka as the streaming

interconnect, and went so far as to propose the Kappa

Architecture, which basically means running a single pipeline

using a well-designed system that’s appropriately built for the job

at hand. I’m not convinced that notion itself requires a name, but I

fully support the idea in principle.

O'Reilly online learning
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Quite honestly, I’d take things a step further. I would argue that

well-designed streaming systems actually provide a strict

superset of batch functionality. Modulo perhaps an efficiency

delta[1], there should be no need for batch systems as they exist

today. And kudos to the Flink folks for taking this idea to heart

and building a system that’s all-streaming-all-the-time under the

covers, even in “batch” mode; I love it.

The corollary of all this is that broad maturation of streaming

systems combined with robust frameworks for unbounded data

processing will, in time, allow the relegation of the Lambda

Architecture to the antiquity of big data history where it belongs. I

believe the time has come to make this a reality. Because to do

so, i.e. to beat batch at its own game, you really only need two

things:

Correctness — This gets you parity with batch.

At the core, correctness boils down to consistent storage.

Streaming systems need a method for checkpointing persistent

state over time (something Kreps has talked about in his Why

local state is a fundamental primitive in stream processing post),

and it must be well-designed enough to remain consistent in light

1. 
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of machine failures. When Spark Streaming first appeared in the

public big data scene a few years ago, it was a beacon of

consistency in an otherwise dark streaming world. Thankfully,

things have improved somewhat since then, but it is remarkable

how many streaming systems still try to get by without strong

consistency; I seriously cannot believe that at-most-once

processing is still a thing, but it is.

To reiterate, because this point is important: strong consistency is

required for exactly-once processing, which is required for

correctness, which is a requirement for any system that’s going to

have a chance at meeting or exceeding the capabilities of batch

systems. Unless you just truly don’t care about your results, I

implore you to shun any streaming system that doesn’t provide

strongly consistent state. Batch systems don’t require you to

verify ahead of time if they are capable of producing correct

answers; don’t waste your time on streaming systems that can’t

meet that same bar.

If you’re curious to learn more about what it takes to get strong

consistency in a streaming system, I recommend you check out

the MillWheel and Spark Streaming papers. Both papers spend a

significant amount of time discussing consistency. Given the

amount of quality information on this topic in the literature and

elsewhere, I won’t be covering it any further in these posts.

Tools for reasoning about time — This gets you beyond batch.

Good tools for reasoning about time are essential for dealing with

unbounded, unordered data of varying event-time skew. An

increasing number of modern data sets exhibit these

characteristics, and existing batch systems (as well as most

streaming systems) lack the necessary tools to cope with the

difficulties they impose. I will spend the remainder of this post,

and the bulk of the next post, explaining and focusing on this

2. 
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point.

To begin with, we’ll get a basic understanding of the important

concept of time domains, after which we’ll take a deeper look at

what I mean by unbounded, unordered data of varying event-time

skew. We’ll then spend the rest of this post looking at common

approaches to bounded and unbounded data processing, using

both batch and streaming systems.

Event time vs. processing time

To speak cogently about unbounded data processing requires a

clear understanding of the domains of time involved. Within any

data processing system, there are typically two domains of time

we care about:

Event time, which is the time at which events actually occurred.

Processing time, which is the time at which events are observed

in the system.

Not all use cases care about event times (and if yours doesn’t,

hooray! — your life is easier), but many do. Examples include

characterizing user behavior over time, most billing applications,

and many types of anomaly detection, to name a few.

In an ideal world, event time and processing time would always

be equal, with events being processed immediately as they occur.

Reality is not so kind, however, and the skew between event time

and processing time is not only non-zero, but often a highly

variable function of the characteristics of the underlying input

sources, execution engine, and hardware. Things that can affect

the level of skew include:

Shared resource limitations, such as network congestion, network

partitions, or shared CPU in a non-dedicated environment.

Software causes, such as distributed system logic, contention,
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etc.

Features of the data themselves, including key distribution,

variance in throughput, or variance in disorder (e.g., a plane full of

people taking their phones out of airplane mode after having used

them offline for the entire flight).

As a result, if you plot the progress of event time and processing

time in any real-world system, you typically end up with

something that looks a bit like the red line in Figure 1.

Figure 1: Example time domain mapping. The X-axis

represents event time completeness in the system, i.e. the time X

in event time up to which all data with event times less than X

have been observed. The Y-axis represents the progress of

processing time, i.e. normal clock time as observed by the data
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processing system as it executes. Image: Tyler Akidau.

The black dashed line with a slope of one represents the ideal,

where processing time and event time are exactly equal; the red

line represents reality. In this example, the system lags a bit at

the beginning of processing time, veers closer toward the ideal in

the middle, then lags again a bit toward the end. The horizontal

distance between the ideal and the red line is the skew between

processing time and event time. That skew is essentially the

latency introduced by the processing pipeline.

Since the mapping between event time and processing time is not

static, this means you cannot analyze your data solely within the

context of when they are observed in your pipeline if you care

about their event times (i.e., when the events actually occurred).

Unfortunately, this is the way most existing systems designed for

unbounded data operate. To cope with the infinite nature of

unbounded data sets, these systems typically provide some

notion of windowing the incoming data. We’ll discuss windowing

in great depth below, but it essentially means chopping up a data

set into finite pieces along temporal boundaries.

If you care about correctness and are interested in analyzing your

data in the context of their event times, you cannot define those

temporal boundaries using processing time (i.e., processing time

windowing), as most existing systems do; with no consistent

correlation between processing time and event time, some of

your event time data are going to end up in the wrong processing

time windows (due to the inherent lag in distributed systems, the

online/offline nature of many types of input sources, etc.),

throwing correctness out the window, as it were. We’ll look at this

problem in more detail in a number of examples below as well as

in the next post.
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Unfortunately, the picture isn’t exactly rosy when windowing by

event time, either. In the context of unbounded data, disorder and

variable skew induce a completeness problem for event time

windows: lacking a predictable mapping between processing time

and event time, how can you determine when you’ve observed all

the data for a given event time X? For many real-world data

sources, you simply can’t. The vast majority of data processing

systems in use today rely on some notion of completeness, which

puts them at a severe disadvantage when applied to unbounded

data sets.

I propose that instead of attempting to groom unbounded data

into finite batches of information that eventually become

complete, we should be designing tools that allow us to live in the

world of uncertainty imposed by these complex data sets. New

data will arrive, old data may be retracted or updated, and any

system we build should be able to cope with these facts on its

own, with notions of completeness being a convenient

optimization rather than a semantic necessity.

Before diving into how we’ve tried to build such a system with the

Dataflow Model used in Cloud Dataflow, let’s finish up one more

useful piece of background: common data processing patterns.

Data processing patterns

At this point in time, we have enough background established that

we can start looking at the core types of usage patterns common

across bounded and unbounded data processing today. We’ll look

at both types of processing, and where relevant, within the

context of the two main types of engines we care about (batch

and streaming, where in this context, I’m essentially lumping

micro-batch in with streaming since the differences between the

two aren’t terribly important at this level).
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Bounded data

Processing bounded data is quite straightforward, and likely

familiar to everyone. In the diagram below, we start out on the left

with a data set full of entropy. We run it through some data

processing engine (typically batch, though a well-designed

streaming engine would work just as well), such as MapReduce,

and on the right end up with a new structured data set with

greater inherent value:

Figure 2: Bounded data processing with a classic batch

engine. A finite pool of unstructured data on the left is run

through a data processing engine, resulting in corresponding

structured data on the right. Image: Tyler Akidau.

Though there are, of course, infinite variations on what you can

actually calculate as part of this scheme, the overall model is

quite simple. Much more interesting is the task of processing an

unbounded data set. Let’s now look at the various ways

unbounded data are typically processed, starting with the

approaches used with traditional batch engines, and then ending

up with the approaches one can take with a system designed for

unbounded data, such as most streaming or micro-batch engines.

Unbounded data — batch
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Batch engines, though not explicitly designed with unbounded

data in mind, have been used to process unbounded data sets

since batch systems were first conceived. As one might expect,

such approaches revolve around slicing up the unbounded data

into a collection of bounded data sets appropriate for batch

processing.

Fixed windows

The most common way to process an unbounded data set using

repeated runs of a batch engine is by windowing the input data

into fixed-sized windows, then processing each of those windows

as a separate, bounded data source. Particularly for input

sources like logs, where events can be written into directory and

file hierarchies whose names encode the window they

correspond to, this sort of thing appears quite straightforward at

first blush since you’ve essentially performed the time-based

shuffle to get data into the appropriate event time windows ahead

of time.

In reality, however, most systems still have a completeness

problem to deal with: what if some of your events are delayed en

route to the logs due to a network partition? What if your events

are collected globally and must be transferred to a common

location before processing? What if your events come from

mobile devices? This means some sort of mitigation may be

necessary (e.g., delaying processing until you’re sure all events

have been collected, or re-processing the entire batch for a given

window whenever data arrive late).
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Figure 3: Unbounded data processing via ad hoc fixed

windows with a classic batch engine. An unbounded data set

is collected up front into finite, fixed-size windows of bounded

data that are then processed via successive runs a of classic

batch engine. Image: Tyler Akidau.

Sessions

This approach breaks down even more when you try to use a

batch engine to process unbounded data into more sophisticated

windowing strategies, like sessions. Sessions are typically

defined as periods of activity (e.g., for a specific user) terminated

by a gap of inactivity. When calculating sessions using a typical

batch engine, you often end up with sessions that are split across

batches, as indicated by the red marks in the diagram below. The

number of splits can be reduced by increasing batch sizes, but at

the cost of increased latency. Another option is to add additional

logic to stitch up sessions from previous runs, but at the cost of

further complexity.

Figure 4: Unbounded data processing into sessions via ad

hoc fixed windows with a classic batch engine. An unbounded

data set is collected up front into finite, fixed-size windows of

bounded data that are then subdivided into dynamic session

windows via successive runs a of classic batch engine. Image:
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Tyler Akidau.

Either way, using a classic batch engine to calculate sessions is

less than ideal. A nicer way would be to build up sessions in a

streaming manner, which we’ll look at later on.

Unbounded data — streaming

Contrary to the ad hoc nature of most batch-based unbounded

data processing approaches, streaming systems are built for

unbounded data. As I noted earlier, for many real-world,

distributed input sources, you not only find yourself dealing with

unbounded data, but also data that are:

Highly unordered with respect to event times, meaning you

need some sort of time-based shuffle in your pipeline if you want

to analyze the data in the context in which they occurred.

Of varying event time skew, meaning you can’t just assume

you’ll always see most of the data for a given event time X within

some constant epsilon of time Y.

There are a handful of approaches one can take when dealing

with data that have these characteristics. I generally categorize

these approaches into four groups:

Time-agnostic

Approximation

Windowing by processing time

Windowing by event time

We’ll now spend a little bit of time looking at each of these

approaches.

Time-agnostic

Time-agnostic processing is used in cases where time is

essentially irrelevant — i.e., all relevant logic is data driven. Since
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everything about such use cases is dictated by the arrival of more

data, there’s really nothing special a streaming engine has to

support other than basic data delivery. As a result, essentially all

streaming systems in existence support time-agnostic use cases

out of the box (modulo system-to-system variances in

consistency guarantees, of course, for those of you that care

about correctness). Batch systems are also well suited for time-

agnostic processing of unbounded data sources, by simply

chopping the unbounded source into an arbitrary sequence of

bounded data sets and processing those data sets independently.

We’ll look at a couple of concrete examples in this section, but

given the straightforwardness of handling time-agnostic

processing, won’t spend much more time on it beyond that.

Filtering

A very basic form of time-agnostic processing is filtering. Imagine

you’re processing Web traffic logs, and you want to filter out all

traffic that didn’t originate from a specific domain. You would look

at each record as it arrived, see if it belonged to the domain of

interest, and drop it if not. Since this sort of thing depends only on

a single element at any time, the fact that the data source is

unbounded, unordered, and of varying event time skew is

irrelevant.

Figure 5: Filtering unbounded data. A collection of data

(flowing left to right) of varying types is filtered into a

homogeneous collection containing a single type. Image: Tyler
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Akidau.

Inner-joins

Another time-agnostic example is an inner-join (or hash-join).

When joining two unbounded data sources, if you only care about

the results of a join when an element from both sources arrive,

there’s no temporal element to the logic. Upon seeing a value

from one source, you can simply buffer it up in persistent state;

you only need to emit the joined record once the second value

from the other source arrives. (In truth, you’d likely want some

sort of garbage collection policy for unemitted partial joins, which

would likely be time based. But for a use case with little or no

uncompleted joins, such a thing might not be an issue.)

Figure 6: Performing an inner join on unbounded data. Joins

are produced when matching elements from both sources are

observed. Image: Tyler Akidau.

Switching semantics to some sort of outer join introduces the data

completeness problem we’ve talked about: once you’ve seen one

side of the join, how do you know whether the other side is ever

going to arrive or not? Truth be told, you don’t, so you have to

introduce some notion of a timeout, which introduces an element

of time. That element of time is essentially a form of windowing,

which we’ll look at more closely in a moment.

Approximation algorithms

about:reader?url=https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

19 di 30



Figure 7: Computing approximations on unbounded data.

Data are run through a complex algorithm, yielding output data

that look more or less like the desired result on the other side.

Image: Tyler Akidau.

The second major category of approaches is approximation

algorithms, such as approximate Top-N, streaming K-means, etc.

They take an unbounded source of input and provide output data

that, if you squint at them, look more or less like what you were

hoping to get. The upside of approximation algorithms is that, by

design, they are low overhead and designed for unbounded data.

The downsides are that a limited set of them exist, the algorithms

themselves are often complicated (which makes it difficult to

conjure up new ones), and their approximate nature limits their

utility.

It’s worth noting: these algorithms typically do have some element

of time in their design (e.g., some sort of built-in decay). And

since they process elements as they arrive, that element of time

is usually processing-time based. This is particularly important for

algorithms that provide some sort of provable error bounds on

their approximations. If those error bounds are predicated on data

arriving in order, they mean essentially nothing when you feed the

algorithm unordered data with varying event-time skew.

Something to keep in mind.

Approximation algorithms themselves are a fascinating subject,

but as they are essentially another example of time-agnostic

processing (modulo the temporal features of the algorithms

themselves), they’re quite straightforward to use, and thus not
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worth further attention given our current focus.

Windowing

The remaining two approaches for unbounded data processing

are both variations of windowing. Before diving into the

differences between them, I should make it clear exactly what I

mean by windowing since I’ve only touched on it briefly.

Windowing is simply the notion of taking a data source (either

unbounded or bounded), and chopping it up along temporal

boundaries into finite chunks for processing. The following

diagram shows three different windowing patterns:

Figure 8: Example windowing strategies. Each example is

shown for three different keys, highlighting the difference between

aligned windows (which apply across all the data) and unaligned

windows (which apply across a subset of the data). Image: Tyler

Akidau.

Fixed windows: Fixed windows slice up time into segments with

a fixed-size temporal length. Typically (as in Figure 8), the

segments for fixed windows are applied uniformly across the

entire data set, which is an example of aligned windows. In some

cases, it’s desirable to phase-shift the windows for different

subsets of the data (e.g., per key) to spread window completion

load more evenly over time, which instead is an example of
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unaligned windows since they vary across the data.

Sliding windows: A generalization of fixed windows, sliding

windows are defined by a fixed length and a fixed period. If the

period is less than the length, then the windows overlap. If the

period equals the length, you have fixed windows. And if the

period is greater than the length, you have a weird sort of

sampling window that only looks at subsets of the data over time.

As with fixed windows, sliding windows are typically aligned,

though may be unaligned as a performance optimization in

certain use cases. Note that the sliding windows in the Figure 8

are drawn as they are to give a sense of sliding motion; in reality,

all five windows would apply across the entire data set.

Sessions: An example of dynamic windows, sessions are

composed of sequences of events terminated by a gap of

inactivity greater than some timeout. Sessions are commonly

used for analyzing user behavior over time, by grouping together

a series of temporally-related events (e.g., a sequence of videos

viewed in one sitting). Sessions are interesting because their

lengths cannot be defined a priori; they are dependent upon the

actual data involved. They’re also the canonical example of

unaligned windows since sessions are practically never identical

across different subsets of data (e.g., different users).

The two domains of time discussed — processing time and event

time — are essentially the two we care about[2]. Windowing

makes sense in both domains, so we’ll look at each in detail and

see how they differ. Since processing time windowing is vastly

more common in existing systems, I’ll start there.

Windowing by processing time
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Figure 9: Windowing into fixed windows by processing time.

Data are collected into windows based on the order they arrive in

the pipeline. Image: Tyler Akidau.

When windowing by processing time, the system essentially

buffers up incoming data into windows until some amount of

processing time has passed. For example, in the case of five-

minute fixed windows, the system would buffer up data for five

minutes of processing time, after which it would treat all the data

it had observed in those five minutes as a window and send them

downstream for processing.

There are a few nice properties of processing time windowing:

It’s simple. The implementation is extremely straightforward

since you never worry about shuffling data within time. You just

buffer things up as they arrive and send them downstream when

the window closes.

Judging window completeness is straightforward. Since the

system has perfect knowledge of whether all inputs for a window

have been seen or not, it can make perfect decisions about

whether a given window is complete or not. This means there is

no need to be able to deal with “late” data in any way when

windowing by processing time.

If you’re wanting to infer information about the source as it is

observed, processing time windowing is exactly what you want.

Many monitoring scenarios fall into this category. Imagine

tracking the number of requests per second sent to a global-scale

Web service. Calculating a rate of these requests for the purpose

of detecting outages is a perfect use of processing time
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windowing.

Good points aside, there is one very big downside to processing

time windowing: if the data in question have event times

associated with them, those data must arrive in event time order if

the processing time windows are to reflect the reality of when

those events actually happened. Unfortunately, event-time

ordered data are uncommon in many real-world, distributed input

sources.

As a simple example, imagine any mobile app that gathers usage

statistics for later processing. In cases where a given mobile

device goes offline for any amount of time (brief loss of

connectivity, airplane mode while flying across the country, etc.),

the data recorded during that period won’t be uploaded until the

device comes online again. That means data might arrive with an

event time skew of minutes, hours, days, weeks, or more. It’s

essentially impossible to draw any sort of useful inferences from

such a data set when windowed by processing time.

As another example, many distributed input sources may seem to

provide event-time ordered (or very nearly so) data when the

overall system is healthy. Unfortunately, the fact that event-time

skew is low for the input source when healthy does not mean it

will always stay that way. Consider a global service that

processes data collected on multiple continents. If network issues

across a bandwidth-constrained transcontinental line (which,

sadly, are surprisingly common) further decrease bandwidth

and/or increase latency, suddenly a portion of your input data

may start arriving with much greater skew than before. If you are

windowing that data by processing time, your windows are no

longer representative of the data that actually occurred within

them; instead, they represent the windows of time as the events

arrived at the processing pipeline, which is some arbitrary mix of
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old and current data.

What we really want in both of those cases is to window data by

their event times in a way that is robust to the order of arrival of

events. What we really want is event time windowing.

Windowing by event time

Event time windowing is what you use when you need to observe

a data source in finite chunks that reflect the times at which those

events actually happened. It’s the gold standard of windowing.

Sadly, most data processing systems in use today lack native

support for it (though any system with a decent consistency

model, like Hadoop or Spark Streaming, could act as a

reasonable substrate for building such a windowing system).

This diagram shows an example of windowing an unbounded

source into one-hour fixed windows:

Figure 10: Windowing into fixed windows by event time. Data

are collected into windows based on the times they occurred. The

white arrows call out example data that arrived in processing time

windows that differed from the event time windows to which they

belonged. Image: Tyler Akidau.

The solid white lines in the diagram call out two particular data of

interest. Those two data both arrived in processing time windows

that did not match the event time windows to which they

belonged. As such, if these data had been windowed into
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processing time windows for a use case that cared about event

times, the calculated results would have been incorrect. As one

would expect, event time correctness is one nice thing about

using event time windows.

Another nice thing about event time windowing over an

unbounded data source is that you can create dynamically sized

windows, such as sessions, without the arbitrary splits observed

when generating sessions over fixed windows (as we saw

previously in the sessions example from the “Unbounded data —

batch” section):

Figure 11: Windowing into session windows by event time.

Data are collected into session windows capturing bursts of

activity based on the times that the corresponding events

occurred. The white arrows again call out the temporal shuffle

necessary to put the data into their correct event-time locations.

Image: Tyler Akidau.

Of course, powerful semantics rarely come for free, and event

time windows are no exception. Event time windows have two

notable drawbacks due to the fact that windows must often live

longer (in processing time) than the actual length of the window

itself:

Buffering: Due to extended window lifetimes, more buffering of

data is required. Thankfully, persistent storage is generally the
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cheapest of the resource types most data processing systems

depend on (the others being primarily CPU, network bandwidth,

and RAM). As such, this problem is typically much less of a

concern than one might think when using any well-designed data-

processing system with strongly consistent persistent state and a

decent in-memory caching layer. Also, many useful aggregations

do not require the entire input set to be buffered (e.g., sum, or

average), but instead can be performed incrementally, with a

much smaller, intermediate aggregate stored in persistent state.

Completeness: Given that we often have no good way of

knowing when we’ve seen all the data for a given window, how do

we know when the results for the window are ready to

materialize? In truth, we simply don’t. For many types of inputs,

the system can give a reasonably accurate heuristic estimate of

window completion via something like MillWheel’s watermarks

(which I’ll talk about more in Part 2). But in cases where absolute

correctness is paramount (again, think billing), the only real option

is to provide a way for the pipeline builder to express when they

want results for windows to be materialized, and how those

results should be refined over time. Dealing with window

completeness (or lack, thereof), is a fascinating topic, but one

perhaps best explored in the context of concrete examples, which

we’ll look at next time.

Conclusion

Whew! That was a lot of information. To those of you that have

made it this far: you are to be commended! At this point we are

roughly halfway through the material I want to cover, so it’s

probably reasonable to step back, recap what I’ve covered so far,

and let things settle a bit before diving into Part 2. The upside of

all this is that Part 1 is the boring post; Part 2 is where the fun

about:reader?url=https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

27 di 30



really begins.

Recap

To summarize, in this post I’ve:

Clarified terminology, specifically narrowing the definition of

“streaming” to apply to execution engines only, while using more

descriptive terms like unbounded data and

approximate/speculative results for distinct concepts often

categorized under the “streaming” umbrella.

Assessed the relative capabilities of well-designed batch and

streaming systems, positing that streaming is in fact a strict

superset of batch, and that notions like the Lambda

Architecture, which are predicated on streaming being inferior to

batch, are destined for retirement as streaming systems mature.

Proposed two high-level concepts necessary for streaming

systems to both catch up to and ultimately surpass batch, those

being correctness and tools for reasoning about time,

respectively.

Established the important differences between event time and

processing time, characterized the difficulties those

differences impose when analyzing data in the context of when

they occurred, and proposed a shift in approach away from

notions of completeness and toward simply adapting to

changes in data over time.

Looked at the major data processing approaches in common

use today for bounded and unbounded data, via both batch and

streaming engines, roughly categorizing the unbounded

approaches into: time-agnostic, approximation, windowing by

processing time, and windowing by event time.

Next time
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This post provides the context necessary for the concrete

examples I’ll be exploring in Part 2. That post will consist of

roughly the following:

A conceptual look at how we’ve broken up the notion of data

processing in the Dataflow Model across four related axes: what,

where, when, and how.

A detailed look at processing a simple, concrete example data

set across multiple scenarios, highlighting the plurality of use

cases enabled by the Dataflow Model, and the concrete APIs

involved. These examples will help drive home the notions of

event time and processing time introduced in this post, while

additionally exploring new concepts, such as watermarks.

A comparison of existing data-processing systems across the

important characteristics covered in both posts, to better enable

educated choice amongst them, and to encourage improvement

in areas that are lacking, with my ultimate goal being the

betterment of data processing systems in general, and streaming

systems in particular, across the entire big data community.

Should be a good time. See you then!

[1] One which I propose is not an inherent limitation of streaming

systems, but simply a consequence of design choices made in

most streaming systems thus far. The efficiency delta between

batch and streaming is largely the result of the increased bundling

and more efficient shuffle transports found in batch systems.

Modern batch systems go to great lengths to implement

sophisticated optimizations that allow for remarkable levels of

throughput using surprisingly modest compute resources. There’s

no reason the types of clever insights that make batch systems

the efficiency heavyweights they are today couldn’t be

incorporated into a system designed for unbounded data,
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providing users flexible choice between what we typically

consider to be high-latency, higher-efficiency “batch” processing

and low-latency, lower-efficiency “streaming” processing. This is

effectively what we’ve done with Cloud Dataflow by providing

both batch and streaming runners under the same unified model.

In our case, we use separate runners because we happen to

have two independently designed systems optimized for their

specific use cases. Long-term, from an engineering perspective,

I’d love to see us merge the two into a single system which

incorporates the best parts of both, while still maintaining the

flexibility of choosing an appropriate efficiency level. But that’s not

what we have today. And honestly, thanks to the unified Dataflow

Model, it’s not even strictly necessary; so it may well never

happen. (Return)

[2] If you poke around enough in the academic literature or SQL-

based streaming systems, you’ll also come across a third

windowing time domain: tuple-based windowing (i.e., windows

whose sizes are counted in numbers of elements). However,

tuple-based windowing is essentially a form of processing-time

windowing where elements are assigned monotonically

increasing timestamps as they arrive at the system. As such, we

won’t discuss tuple-based windowing in detail here (though we

will see an example of it in Part 2). (Return)

Check out the tutorial session "Designing Modern Streaming Data

Applications" at the Strata Data Conference in New York City,

September 11-13, 2018.
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